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1. Introduction

Stability of linear Ordinary Differential Equations
(ODEs) can be analyzed by Lyapunov’s technique [14],
though Routh-Hurwitz criterion [19,10,8] is more
adapted to the formulation of parametric stability condi-
tions. The main interest of Lyapunov’s approach is to
define Linear Matrix Inequalities (LMIs) conditions [3],
which can be used for example in robust controller
synthesis. But it is also well known that Lyapunov’s
technique is the fundamental tool to analyze the stability
of nonlinear systems [12].

In spite of their increasing interest in the modeling of
diffusion processes [1,18] and in the synthesis of robust
control laws [17], Fractional Differential Equations (FDEs)
have not yet received the same attention as ODEs in the
investigation of their stability.

A recent paper by Sabatier et al. [20] provides a good
survey of the methods available to analyze the stability of

* Corresponding author.
E-mail addresses: jean-claude.trigeassou@ims-bordeaux.fr
(J.C. Trigeassou), nezha.maamri@univ-poitiers.fr (N. Maamri).

0165-1684/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.sigpro.2010.04.024

FDEs. In the linear case, with the hypothesis of commensu-
rate order systems, the main results are Matignon’s theorem
[15] and input/output stability [2]. Recently, a frequency
approach to the stability of FDEs, without explicit computa-
tion of system poles, has been proposed [1,22].

Lyapunov’s approach, in spite of its interest in the
formulation of LMI conditions, has not yet received
satisfactory solutions, and more specifically in the non-
linear case [20]. Nevertheless, Mittag-Leffler’s stability of
nonlinear FDEs has been addressed in a recent paper [13].
The main drawback of these contributions is to rely on a
nonsatisfactory definition of FDE state variables and thus
of their state space representation. An indirect approach,
without explicit formulation of a Lyapunov function, has
been used by Sabatier et al. [20] to formulate LMI
conditions related to commensurate order FDEs.

In this paper, we propose the application of Lyapunov’s
method to linear and nonlinear FDEs thanks to the definition
of a specific Lyapunov function. Our approach relies
fundamentally on the concept of a fractional integration
operator characterized by a continuous frequency distrib-
uted modal law [23]. The corresponding state space
representation allows the definition of an elementary
monochromatic Lyapunov function v(w,t) which leads to
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the FDE Lyapunov function V(t), by integration of all the
monochromatic contributions on the whole spectral range.
The main interest of this Lyapunov function is that it leads
to a parsimonious parametric stability condition, which
would not be possible with a direct application of Lyapunov
usual methodology.

The paper is organized as follows. Definitions related
to fractional integration and FDEs are reminded in Section
2. The frequency distributed model of the fractional
integrator and the corresponding global state space model
of the FDE are analyzed in Sections 3 and 4. A direct
approach to Lyapunov stability is presented in Section 5.
Finally, an indirect approach, based on the continuous
frequency distributed fractional integrator model is
proposed in Section 6.

2. Definitions related to fractional systems
2.1. Fractional derivation and integration

Fractional integration is defined by the Riemann-
Liouville integral [17,18].

The nth order integral (n real positive) of the function
f(t) is defined by the relation

) = / (oo )
T IrmJo

where

I'(n)= /Ooox"‘le"‘dx )

is the gamma function.
I"(f(t)) is interpreted as the convolution of the function
flt)with the impulse response

tn—1
hn(t):m 3)
of the fractional integration operator whose Laplace
transform is

1
) =L{h®} = @

Fractional derivation is the dual operation of the
fractional integration.

Consider the fractional integration operator I"(s)
whose input and output are, respectively, x(t) and y(t).

Then

Y =1I"(x(t) (5)
or

1
Y(s)= anX(s) (6)

Reciprocally, x(t) is the nth order fractional derivative
of y(t) (n real positive) defined as

x(t) = D™(y(t)) (7
or
X(s)=5"Y(s) ®)

where s" represents the Laplace transform of the frac-
tional derivation operator, with the assumption of zero
initial conditions.

2.2. Fractional differential equation (FDE)

Consider the general linear FDE (M < N)
D™ (y(t))+an—1 D™ (y(£) + - - - +a1 D™ (y(1)) + doy(t)

= byD™ (u(t))+ - - - +b1 D™ (u(t)) +bou(t) )]
whose transfer function is (with the assumption of zero
initial conditions)
Y(s) bo+bys™ + ... +bys™ __ B(s)

HS)= —=% = =)
® Uis) ag+as™+--- +ay_1S™-14+sm  A(S)

(10)
The fractional derivation orders:
m<m<-.-- <my (11)

are real positive numbers; they are called external or
explicit orders. It is necessary to define internal or implicit
derivation orders such as

ny=m
n;=m;—m;_4 (12)

Ny =MmMN—1MN_1

Remark the implicit orders n; have been derived from a
composition of fractional derivatives (or equivalently of
fractional integrators), which has been analyzed by
Diethelm and Ford in Lemma 2.3 [5].

3. Fractional integration operator

The fractional integration operator I'(s) is the key
element for FDE simulation. However, the realization of
I"(s), either in analog or numerical form, is not a simple
problem, as in the integer order case. It is possible to
consider the frequency [21] and the time approaches. Let
us remind the time approach synthesis [23].

3.1. Principle

Diffusive representation, used by Heleschewitz and
Matignon [9] and Montseny [16] provide the theoretical
basis for a time approximation of I'(s).

Consider a linear system such as

x(t) = h(t)v(t) (13)

where h(t) is its impulse response and p(w) is called the
diffusive representation (or frequency weighting func-
tion) of the impulse response h(t). h(t) and pu(w) verify the
pseudo Laplace transform definition [16]

h(t) = /Ooo wwye *dw (14)

A continuous frequency weighted state space model is
associated to p(w), according to
oz(w,t)
= —wz(w,t)+v(t
o (w,t)+v(t) (15)
x(t) = [5° pw)z(w,t)dw
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For the fractional integration operator

I"(s):sln with O0<n<1,

tn—l
"O= Fm)
and
w(w)= ww*" (16)

3.2. Discrete frequency state model

This continuous frequency distributed model is not
directly usable. A practical model is obtained by frequency
discretization of u(w), where the function p(w) is
replaced by a multiple step function (with J steps).

For an elementary step, its height is u(w;) and width
Awy. Let ¢, be the weight of the kth element

C = WAwy a7)

Thus, the continuous distributed model becomes a
conventional state model with dimension equal to J.

dz;ﬁt) = 7Cl)k2k(f)+l/(f)“( =1..J
J
X(t) = I;u(wwzk(tmwk (18)
J
= aalt)
k=1

or equivalently

dz(t)

T =AZ ()+Bv(t)
x(t)=CJZ(t) (19)
with
“ —)1 0
V4 .
Zt)=| . | and A= - (20)
i 0 —Cl)_]
Zj
Bl=[1 1 .. 1) cJ=[a & .. g @n

With this time approach, we get a modal state model
of I"(s) with the requirements @w;—0, w;— co and J< 1.

4. State space model of FDEs
4.1. Introduction

The association of the pseudo-state model of the
FDE (see Appendix 1) and of the state model of each
fractional integrator leads naturally to the global state
model of the FDE, which is an equivalent ODE, with
infinite dimension [23].

4.2. State space model of an FDE

The state model is based on the pseudo state model of
the FDE (63) (65), with input u(t), output y(t) and pseudo
state variable X(t) whose dimension is N, where N is the
number of fractional derivatives (or equivalently the
number of fractional integrators).

Then
D™ (X()) = AX()+Bu(t)
y(©) =C"X(t) 22)
X1 nq Dnl(xl(t))
D2 t
xo= "% n=|"|: prxay=|”
XN nn DnN(xN(t))

A, B and C (64) (66) have been expressed in the controller
canonical form, but it would be possible to use other
canonical forms [11].

The components x;(t) of the pseudo state vector are the
outputs of the N fractional integrators I™(s), their inputs v(t)
depending on the chosen form of the pseudo state model.

In this paper, we assume (only for simplicity) that
O<nj<1Vi

According to the definitions of Section 3, there are two
possible models for the fractional integrators.

4.2.1. Continuous frequency distributed state
Let zj(w,t) be the continuously distributed state of I™(s),
verifying the following state model:

0
az,-(w,t) = —wzj(w,t)+v;(t)

(23)
xi(t)y= [5° pi(w)zi(w,t)dw
with
[i(c0) = wca*"i 24)

ui(w) is the frequency weighting function of the state
variable zj(w,t) with the fractional order n;.

This state space model (23), (24) and closely related
concepts have been discussed by a number of authors
before: refer to the survey paper by Diethelm [6] and
the references cited there, in particular the works of
Chatterjee [4] and Yuan and Agrawal [24].

4.2.2. Discrete frequency distributed state
Let Z,(t) be the discrete frequency distributed state vector
(dimZ;(t) =]); Z;(t) verifies the following state equation:
Z,(t)=AZ(O)+B,vi(t)
xi(t) = C[Z;(t) (25)
where Aj;, Bl. and C I correspond to the fractional order n;.
In the case of the pseudo state model in controller

canonical form, the input v,(t) of each fractional integrator
verifies the following relations:

Vi) =x1(t) (=1 to N-1)

N-1
Vi) =u()= axi 1) (i=N) (26)
i=0
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4.3. Comments

The pseudo state variables x;(t) are the outputs of the
fractional integrators I"(s). In the frequency discrete case,
xi(t) is defined as x;(t) :g{;i(t).

This means that x;(t) is the weighted sum of the
components z;j(t) (i=0,...,J) of the state vector Z;(t) of
the considered integrator.

The variables z;;(t) are true state variables correspond-
ing to the outputs of first order systems (18), they are able
to memorize an initial condition.

On the other hand, because x,(t) is the weighted sum of
these state variables, it is not a true state variable because
it is not intrinsically able to memorize an initial condition.

The true state vector of the FDE is composed of all the
states of the different fractional integrators: thus the state
vector of an FDE is infinite dimensional, even when there
is only one fractional derivative in the FDE.

The FDE has been converted into an exactly equivalent
infinite dimensional ODE (in the case of the continuously
distributed state). This is not due to an approximation of
the FDE by an integer model, but due to the fundamental
property of the fractional integrator which is intrinsically
of integer nature with infinite distributed dimension.

4.4. Example: one derivative FDE

Though it is an elementary model, the one derivative
FDE is an important case for testing the application of
Lyapunov’s technique to FDEs.

Consider
H(s) = sia (27)
or
D™(x(t)) +ax(t) = u(t) (28)

This system is characterized by the continuous
frequency distributed model

az(g;.t) = —wz(w,t)+u(t)—ax(t)
x(t) = / u(w)z(w,t)ydw 29)
0
with
_sinnm
)= "—
or by the discrete frequency distributed model
9 _ pz +Biuo-ax)
X =CjZ
dimZ =] (30)
This last model can be expressed as
2 _ a7 +Bu-aCl2) G =AZ+Butn®=C]Z
(31)
with
A* =A—aB,CT (32)

A is a diagonal matrix while A* is a full matrix, with
dimA™ =JxJ.

5. Direct Lyapunov approach

5.1. Application of Lyapunov’s technique to FDEs

The application of Lyapunov’s technique relies on the
definition of a Lyapunov function.

With linear ODEs, it is well known that this function
V(X(t)) has to be a quadratic form [11]

V() =X"PX (33)

where X is the state of the system and P a positive definite
matrix and V(t) represents the energy of the system.
According to Lyapunov’s theory [14], the system is
stable if (dV(t)/dt) <0, i.e. if its energy decreases (for an
autonomous system with no input).
Consider now the FDE case corresponding to

D2 (X(t) = AX(t) 34

where X(t) is a pseudo state vector.

The first step is to define a Lyapunov function V(X(t)).
Is it realistic to use a quadratic function of X(t) in the
fractional case ?

Moreover, how is it possible to characterize the system
energy decrease, assuming that we have been able to
define V(X(t))?

The choice dV(t)/dtis adapted to the ODE case. In the
FDE case, perhaps it would be more convenient to use a
fractional derivative of V(t)?

For example, with a commensurate order system,
D"(V(X)) appears to be a possible choice; nevertheless, is
D"(V(X)) adapted to characterize energy decrease?

Let us notice that in the noncommensurate case, there
are N values n;, i.e. N possible fractional derivatives!

This brief discussion illustrates the difficulty to apply
Lyapunov’s technique to FDEs.

5.2. Direct approach

Fortunately, the fractional integrator concept (I"i(s),
with internal state Z; or z{w,t)) provides a realistic
solution to these difficulties.

In fact, we have shown that X is only a pseudo state
vector that has to be replaced by the state Z (in the
discrete frequency distributed case).

Thus, the FDE is equivalent to an ODE with integer
order derivatives, characterized by an infinite dimensional
state (large dimensional in practice).

Effectively, if the system is composed of N fractional
integrators, dimZ = NJ with J< 1.

In spite of this difficulty linked to the dimension of Z,
the FDE has been transformed into an equivalent ODE,
which can be characterized by its Lyapunov function V(Z)
characterizing the system energy.

Consider the one derivative FDE case (31) (32):

Viy=VZ)=2"PZ (35)

where P is a positive definite matrix.
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Because (dZ/dt) = A*Z then
% =Z"(A*TP+PA")Z. 36)
The equivalent ODE is stable if (dV(t)/dt) <0, i.e. if
A*TP 4 PA* is a negative definite matrix.
The equation

ATP4PA* =~ 37)

defines a linear system whose solutions are the pj
coefficients of matrix P (with p;=pji).

Practically, for a given A* Eq. (37) provides the matrix
P and the FDE is stable if P is positive definite, i.e. if all its
minors are positive.

Apparently, there is no difficulty to apply Lyapunov’s
technique to FDEs.

But this apparent simplicity is an illusion.

In fact, dimP = dimA* = JxJ with J < 1.

Thus, it is necessary to calculate the coefficients pj
with a large number of equations and then to test the
positivity of all the minors of P, it is obvious that
numerical problems will arise with this direct approach.

Indeed, these numerical problems will be much more
difficult to solve with an N derivatives FDE, thus the direct
approach does not seem to be realistic.

6. Indirect Lyapunov approach
6.1. Linear FDE

This indirect approach is based on the continuous
frequency distributed model of the fractional integrator.
Consider the one derivative case

D"'(x)+ax=0 (38)

which is exactly equivalent to the ODE

az(g;'t) — —wz(w,t)—ax(t)

x(t)= /000 w)z(w,t)dw 39)
with

) = sinnzw

Let us define two Lyapunov functions

e v(w,t) is the monochromatic Lyapunov function corre-
sponding to the elementary frequency w.

e V(t) is the Lyapunov function summing all the mono-
chromatic v(w,t) with the weighting function p(w).

Thus

v(w,t) =Z%(w,t) (40)
and

V()= /OOC wow(o,tydo = /0Dc W)z (w,tydw (41)

Indeed, v(w,t) is positive. Because u(w) is positive for
all w, V(t) is also a positive Lyapunov function.
Then

ﬁ”(gf't) — 2202 (@, t)—2az(@,x(D) 42)

and

dv(t) o0 ov(w,t)

e / pl) =5 do

w _ o0 5 _ o0
i = 2/0 ww)wz(w,t)ydw 2ax(t)/0 ww)z(w,t)ydw

(43)
Finally

ave _ -2 /0C W)wz*(w,t)dw—2ax?(t) (44)

dt Jo

Owing to the Lemma of Appendix 2, dV(t)/dt is
negative if a > 0.
Conclusion: the one derivative FDE

D"(x)+ax =0 is stable if a>0 (45)

which is a well known result in the linear case [17].

Remark 1. With the direct approach, it is necessary to
solve a large dimensional problem (37) in order to
investigate the stability of an elementary FDE. So, it is
obvious that the indirect approach leads to a parsimo-
nious methodology, which is the necessary requirement
to solve more complex problems.

Remark 2. A complete analysis of the considered FDE
stability would need to investigate the complex para-
meter case. Unfortunately, this case needs more sophis-
ticated tools and it is not possible to conclude with the
presented theory (see Appendix 3).

6.2. Nonlinear FDE

Consider the nonlinear FDE
D"(x)=f(x) (46)

with fix)=ax>+bx where a> 0 and b <0.

Owing to the continuous frequency distributed model
of the fractional integrator, the nonlinear system can be
expressed as

FOD — —ozon+foxey

x(t)= /Ooo u(w)z(w,t)dw 47)

with

—n

() = )

sinnn
s
Because this system is nonlinear, the definition of the
Lyapunov function will be performed using the variable
gradient method [7,12].
Successively, we have to calculate ov(w,t)/ot, dV(t)/dt
and finally v(w,t) and V(t).
Consider the monochromatic Lyapunov function
v(w,t).
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Let us define
ov(w,t)

0z
then
ov(w,t)

ot
and
ov(w,t)

ot

= —woz?(w,t)+ az(w,t)(ax> (t)+ bx(t))
Then
dv(t)

= /0 " )

and finally
av _
dt —
Then, let us consider v(w,t)and V(t). Because we have

defined (ov(w,t))/oz=0z, we get v(w,t) by integration
along the path joining the origin to z

(48)

ov 0z
= a- az(—wz+f(x))

(49)

(50)

ov(w,t)

d
e 4@

D

—o / - wW)wz*(om,t)dm +ax?(t)(ax*(t)+b) (52)
0

Z oy v4 Z2
b)) = —du= du=o+ 53
v(w,t) / u= /0 oudu=o= (33)
Finally,
V(t)= / H)v(w, t)da)_oc/ u(a))z (w t dow (54)

Stability condition: The considered system is stable if
V(t) > 0 and (dV(t)/dt) < 0. V(t) is positive if o > 0. Owing
to the lemma of Appendix 2, dV(t)/dt is negative if

ax*>(ax*+b)<0, ie. if ax*>+b<0 (55)
This last condition defines the stability domain:
/—b [—b

7. Conclusion

A Lyapunov approach to the stability of fractional
differential equations has been presented in this paper.
The key concept of this methodology is the frequency
distributed fractional integrator model, which is the basis
of a global state space model of FDEs.

Because this global model is an equivalent ODE, usual
Lyapunov tools can be used to analyze the stability of both
linear and nonlinear FDEs. The infinite dimension problem

J.C. Trigeassou et al. / Signal Processing 91 (2011) 437-445

arising with the direct approach has been solved using the
continuous frequency distributed model, with specific
Lyapunov functions, which leads to parsimonious para-
metric conditions, fundamental requirement for the
analysis of N derivatives FDEs.

Only the concepts of this new methodology have
been presented in this paper. Further research will be
focused on N derivatives FDEs and their LMI stability
conditions.

Appendix 1. Simulation of an FDE and its pseudo state
model
A.1. Simulation of an FDE

Consider the FDE (9).

Define
1
X)) = AG )U(s) (57)
and
Y(s) = B(s)X(S) (58)

which permits to introduce the classical controller
canonical state space form [11]

X1(8) =x(t)
X2(t) =D™M(x1(1)

X(6) = D" (1 (1))

(59
xo(t) = D™ (xy_1(D)
D™ (xn(t)) = —aoXx1 (L) - - - —an_1Xn (D) +u(t) = &(t)
and
x1(t) =I" (x2(1))
Xi_1 (F) =I"-1(x;(t)) (60)

A1 () = ™ (en(0)
An(t) = ™ (&(0))

This simulation scheme is based on a state space
model which requires N fractional integration operators,
whose transfer functions are, respectively, {I™(s),I"™N-1(s),

.,I™(s)} and connected according to the analog simula-
tion scheme of Fig. 1.

ol Innci (s)

X2(1)

In;y(s) o Ing(s)

X (1) . b() y(t)

-ay.2

£33

Fig. 1. Simulation of an FDE with fractional integrators.
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Finally, y(t) is obtained using the relation
Y(s) = B(s)X(s) 61)

Corresponding to

M-1
YO =" bixi () (62)
i=0

1=
A.2. Pseudo state-space model of the FDE

FDE simulation is based on a fractional state-space
model which can be expressed as

DM (X (1)) = AX(t)+Bu(t) (63)
with
x1(b) D™ (x1(t))
X(t) = xiit) and D:(X(t))= | D™ (>.<,-(t)) (64)
(D) D™(xy (1))
0 1 0 0 0
0 0 1 0 0
A= : ;. B=
0 0 1 0
—ap —a; ... ... —an 1

The output is

y(t)y=C"X(t) (65)
with
C"=[bp ... by 0 ... 0] (66)

These relations define the pseudo state space model of
the FDE in controller canonical form [11].

Appendix 2. Lemma

Consider
W=W,+aW, (67)
with
W, = / wywz?(m,tydm (68)
Jo
and
W, =x(t) (69)

The frequency discretization of W; gives

J J
j=1 j=1

Because wjc;>0 for all j, W; is a positive definite
quadratic form. Moreover, W; can be expressed in the
matrix form as

Wy =2"MZ (71)

with
w1C 0 0
M= 0 ;G 0 (72)
0 0 COJC]
According to its definition (69), W5 is positive. Because
x=CTZ, W, can be expressed as
w,=2"cc'z (73)

This second expression of W, is only positive semi-
definite. Consequently, W =W, +aW, is a positive defi-
nite quadratic form if

M+acc’ (74)

is a positive definite matrix, i.e. if all its minors are
positive. Indeed, because W; and W, are positive, a
positive value of a provides W > 0. But, is it possible to
find a negative value of a satisfying the positivity of W?

Theoretically, it would be necessary to test all the
minors of (74). Practically, a response is given by the first
minor

m; = w1 +ac? (75)

my is positive if a > —% (76)
1

But because a necessary requirement (Section 4.2) is
w1 —0, my is positive if a > 0.

Lemma. The quadratic form W =W, +aW, is positive
definite if and only if a > 0.

Appendix 3. Stability anamysis xith complex
parameter

Consider the FDE
D"(f(t))+af(t)=0 (77)

where a=o+jf is a complex parameter.
Then, f(t) is a complex function
() =x(@®)+jy(t) (78)
The original FDE is equivalent to two coupled FDEs
D"(x(t))+ ax(t)—py(t) =0 29
D (Y(1)+xy(D)+Bx(©) = 0 79

C.1. Conventional stability analysis

Because of coupling, the stability of the real (x) and
imaginary (y) components is subject to the same char-
acteristic polynomial

s2" 4 208" + 0% + 32 =0 (80)

We have analyzed the stability of this polynomial
using a frequency approach [22] for n=0.5

e for o > 0 the system is unconditionally stable
e for oo < 0 the system is stable if

B> o? 81
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Using Matignon’s result [15], the transfer function
1/(s"—A) is stable if its pole lays outside the domain
defined by the condition

larg()] < ng (82)

With the definition A=/4+ji, and n=0.5, we get the
same stability domain as previously, with A,=—o« and
Ay=—p

C.2. Application of Lyapunov’s approach

Because a is complex, the system is governed not only
by one variable f(t) but also by two pseudo state space
variables x(t) and y(t), with their own internal distributed
variables, z(w,t) and z,(w,t), respectively.

So, we have to define two monochromatic Lyapunov
functions

Ux(@,t) =zg(,t) and vy(w,t) =zy(w,t) (83)

Because the variables x(t) and y(t) are coupled, their
internal variables z(w,t) and z,(w,t) are also coupled.

Thus, v(w,t) is necessarily a quadratic form weighted
by a P matrix, which has to be symmetric and positive
definite

v(w,t)=2"Pz (84)
with
=[] mar= o o)
Thus
v(w,b) = p1122 4+ 2P122x2y +P22232, (86)

Finally, the global Lyapunov function V(t) is obtained
by the summation of all the monochromatic functions
v(w,t) on the [0,00[ range with the weighting function
ww).

So, the problem is more complex than with only one
monochromatic function v(w,t). Moreover, the solution is
given by a set of LMI conditions which are not appropriate
to formulate an analytical expression of the stability
domain.

Remark: it would be interesting to express v(w,t) as

v(w,t) = z(w,H)Z(w,t) (87)
with
Z(w,t) =zx+jzy

then, we would get

v(w,t) =2+ (88)
and
V(t) = /0 ” ww)ZZ(@,tydw + /0 ” w)zh(w,t)dw

/0' w(w)|z(@,b)|* do (89)

which is a more simple expression than previously.

This choice of V(t) leads to the derivative

% = —2/ ,u(w)(u|z(w.t)}2dw—2chf(t)|2 (90)
0

which gives the condition

dv() .

= 0if a>0 o1

This result is correct, but conservative, because it does
not take into account the domain defined by % > o2 for
oa<0.

The conservatism is caused by the choice
v(w,t) =z +2z; which is wrong.

An appropriate Lyapunov function has to take into
account the coupling of the internal variables with the
matrix P.

C.3. Conclusion

This stability analysis requires a Lyapunov function
with two coupled variables, which is outside the initial
objective of the paper.
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