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Lyapunov stability of fractional differential equations is addressed in this paper. The key

concept is the frequency distributed fractional integrator model, which is the basis for a

global state space model of FDEs. Two approaches are presented: the direct one is

intuitive but it leads to a large dimension parametric problem while the indirect one,

which is based on the continuous frequency distribution, leads to a parsimonious

solution. Two examples, with linear and nonlinear FDEs, exhibit the main features of

this new methodology.
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1. Introduction

Stability of linear Ordinary Differential Equations
(ODEs) can be analyzed by Lyapunov’s technique [14],
though Routh–Hurwitz criterion [19,10,8] is more
adapted to the formulation of parametric stability condi-
tions. The main interest of Lyapunov’s approach is to
define Linear Matrix Inequalities (LMIs) conditions [3],
which can be used for example in robust controller
synthesis. But it is also well known that Lyapunov’s
technique is the fundamental tool to analyze the stability
of nonlinear systems [12].

In spite of their increasing interest in the modeling of
diffusion processes [1,18] and in the synthesis of robust
control laws [17], Fractional Differential Equations (FDEs)
have not yet received the same attention as ODEs in the
investigation of their stability.

A recent paper by Sabatier et al. [20] provides a good
survey of the methods available to analyze the stability of
ll rights reserved.
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FDEs. In the linear case, with the hypothesis of commensu-
rate order systems, the main results are Matignon’s theorem
[15] and input/output stability [2]. Recently, a frequency
approach to the stability of FDEs, without explicit computa-
tion of system poles, has been proposed [1,22].

Lyapunov’s approach, in spite of its interest in the
formulation of LMI conditions, has not yet received
satisfactory solutions, and more specifically in the non-
linear case [20]. Nevertheless, Mittag–Leffler’s stability of
nonlinear FDEs has been addressed in a recent paper [13].
The main drawback of these contributions is to rely on a
nonsatisfactory definition of FDE state variables and thus
of their state space representation. An indirect approach,
without explicit formulation of a Lyapunov function, has
been used by Sabatier et al. [20] to formulate LMI
conditions related to commensurate order FDEs.

In this paper, we propose the application of Lyapunov’s
method to linear and nonlinear FDEs thanks to the definition
of a specific Lyapunov function. Our approach relies
fundamentally on the concept of a fractional integration
operator characterized by a continuous frequency distrib-
uted modal law [23]. The corresponding state space
representation allows the definition of an elementary
monochromatic Lyapunov function v(o,t) which leads to
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the FDE Lyapunov function V(t), by integration of all the
monochromatic contributions on the whole spectral range.
The main interest of this Lyapunov function is that it leads
to a parsimonious parametric stability condition, which
would not be possible with a direct application of Lyapunov
usual methodology.

The paper is organized as follows. Definitions related
to fractional integration and FDEs are reminded in Section
2. The frequency distributed model of the fractional
integrator and the corresponding global state space model
of the FDE are analyzed in Sections 3 and 4. A direct
approach to Lyapunov stability is presented in Section 5.
Finally, an indirect approach, based on the continuous
frequency distributed fractional integrator model is
proposed in Section 6.

2. Definitions related to fractional systems

2.1. Fractional derivation and integration

Fractional integration is defined by the Riemann–
Liouville integral [17,18].

The nth order integral (n real positive) of the function
f(t) is defined by the relation

Inðf ðtÞÞ ¼
1

CðnÞ

Z t

0
ðt�tÞn�1f ðtÞdt ð1Þ

where

CðnÞ ¼

Z 1
0

xn�1e�x dx ð2Þ

is the gamma function.
In(f(t)) is interpreted as the convolution of the function

f(t)with the impulse response

hnðtÞ ¼
tn�1

CðnÞ
ð3Þ

of the fractional integration operator whose Laplace
transform is

InðsÞ ¼ L hnðtÞ
� �

¼
1

sn
ð4Þ

Fractional derivation is the dual operation of the
fractional integration.

Consider the fractional integration operator In(s)
whose input and output are, respectively, x(t) and y(t).

Then

yðtÞ ¼ InðxðtÞÞ ð5Þ

or

YðsÞ ¼
1

sn
XðsÞ ð6Þ

Reciprocally, x(t) is the nth order fractional derivative
of y(t) (n real positive) defined as

xðtÞ ¼DnðyðtÞÞ ð7Þ

or

XðsÞ ¼ snYðsÞ ð8Þ

where sn represents the Laplace transform of the frac-
tional derivation operator, with the assumption of zero
initial conditions.
2.2. Fractional differential equation (FDE)

Consider the general linear FDE ðMrNÞ

DmN ðyðtÞÞþaN�1DmN�1 ðyðtÞÞþ � � � þa1Dm1 ðyðtÞÞþa0yðtÞ

¼ bMDmM ðuðtÞÞþ � � � þb1Dm1 ðuðtÞÞþb0uðtÞ ð9Þ

whose transfer function is (with the assumption of zero
initial conditions)

HðsÞ ¼
YðsÞ

UðsÞ
¼

b0þb1sm1þ � � � þbMsmM

a0þa1sm1þ � � � þaN�1smN�1þsmN
¼

BðsÞ

AðsÞ

ð10Þ

The fractional derivation orders:

m1om2o � � �omN ð11Þ

are real positive numbers; they are called external or
explicit orders. It is necessary to define internal or implicit
derivation orders such as

n1 ¼m1

^

ni ¼mi�mi�1

^

nN ¼mN�mN�1

ð12Þ

Remark the implicit orders ni have been derived from a
composition of fractional derivatives (or equivalently of
fractional integrators), which has been analyzed by
Diethelm and Ford in Lemma 2.3 [5].

3. Fractional integration operator

The fractional integration operator In(s) is the key
element for FDE simulation. However, the realization of
In(s), either in analog or numerical form, is not a simple
problem, as in the integer order case. It is possible to
consider the frequency [21] and the time approaches. Let
us remind the time approach synthesis [23].

3.1. Principle

Diffusive representation, used by Heleschewitz and
Matignon [9] and Montseny [16] provide the theoretical
basis for a time approximation of In(s).

Consider a linear system such as

xðtÞ ¼ hðtÞvðtÞ ð13Þ

where h(t) is its impulse response and m(o) is called the
diffusive representation (or frequency weighting func-
tion) of the impulse response h(t). h(t) and m(o) verify the
pseudo Laplace transform definition [16]

hðtÞ ¼

Z 1
0

mðoÞe�ot do ð14Þ

A continuous frequency weighted state space model is
associated to m(o), according to

@zðo,tÞ

@t
¼�ozðo,tÞþvðtÞ

xðtÞ ¼
R1

0 mðoÞzðo,tÞdo

8><
>: ð15Þ
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For the fractional integration operator

InðsÞ ¼
1

sn
with 0ono1,

hðtÞ ¼
tn�1

CðnÞ

and

mðoÞ ¼ sinðnpÞ
p o�n ð16Þ

3.2. Discrete frequency state model

This continuous frequency distributed model is not
directly usable. A practical model is obtained by frequency
discretization of m(o), where the function m(o) is
replaced by a multiple step function (with J steps).

For an elementary step, its height is m(ok) and width
Dok. Let ck be the weight of the kth element

ck ¼ mðokÞDok ð17Þ

Thus, the continuous distributed model becomes a
conventional state model with dimension equal to J.

dzkðtÞ

dt
¼�okzkðtÞþvðtÞ9k¼ 1. . .J

xðtÞ ¼
XJ

k ¼ 1

mðokÞzkðtÞDok

¼
XJ

k ¼ 1

ckzkðtÞ

8>>>>>>>>>><
>>>>>>>>>>:

ð18Þ

or equivalently

dZðtÞ

dt
¼ AIZ ðtÞþBIvðtÞ

xðtÞ ¼ C T
I ZðtÞ ð19Þ

with

ZðtÞ ¼

z1

z2

^

zJ

2
66664

3
77775 and AI ¼

�o1 0

&

0 �oJ

2
64

3
75 ð20Þ

BT
I ¼ 1 1 . . . 1

� �
; C T

I ¼
c1 c2 . . . cJ

h i
ð21Þ

With this time approach, we get a modal state model
of In(s) with the requirements o1-0, oJ-N and J51.
4. State space model of FDEs

4.1. Introduction

The association of the pseudo-state model of the
FDE (see Appendix 1) and of the state model of each
fractional integrator leads naturally to the global state
model of the FDE, which is an equivalent ODE, with
infinite dimension [23].
4.2. State space model of an FDE

The state model is based on the pseudo state model of
the FDE (63) (65), with input u(t), output y(t) and pseudo
state variable X ðtÞ whose dimension is N, where N is the
number of fractional derivatives (or equivalently the
number of fractional integrators).

Then

Dn ðX ðtÞÞ ¼ AX ðtÞþBuðtÞ

yðtÞ ¼ C T X ðtÞ ð22Þ

X ðtÞ ¼

x1

x2

^

xN

2
66664

3
77775; n ¼

n1

n2

^

nN

2
66664

3
77775; Dn ðX ðtÞÞ ¼

Dn1 ðx1ðtÞÞ

Dn2 ðx2ðtÞÞ

^

DnN ðxNðtÞÞ

2
66664

3
77775

A, B and C (64) (66) have been expressed in the controller
canonical form, but it would be possible to use other
canonical forms [11].

The components xi(t) of the pseudo state vector are the
outputs of the N fractional integrators Ini ðsÞ, their inputs vi(t)
depending on the chosen form of the pseudo state model.

In this paper, we assume (only for simplicity) that
0onio1 8i.

According to the definitions of Section 3, there are two
possible models for the fractional integrators.

4.2.1. Continuous frequency distributed state

Let zi(o,t) be the continuously distributed state of Ini ðsÞ,
verifying the following state model:

@

@t
ziðo,tÞ ¼�oziðo,tÞþviðtÞ

xiðtÞ ¼
R1

0 miðoÞziðo,tÞdo

8><
>: ð23Þ

with

miðoÞ ¼
sinðnipÞ

p
o�ni ð24Þ

mi(o) is the frequency weighting function of the state
variable zi(o,t) with the fractional order ni.

This state space model (23), (24) and closely related
concepts have been discussed by a number of authors
before: refer to the survey paper by Diethelm [6] and
the references cited there, in particular the works of
Chatterjee [4] and Yuan and Agrawal [24].

4.2.2. Discrete frequency distributed state

Let ZiðtÞ be the discrete frequency distributed state vector
(dimZiðtÞ ¼ J); ZiðtÞ verifies the following state equation:

_Z i
ðtÞ ¼ AIi

Z iðtÞþBIi
viðtÞ

xiðtÞ ¼ C T
Ii
Z iðtÞ ð25Þ

where AIi, BIi
and C Ii

correspond to the fractional order ni.
In the case of the pseudo state model in controller

canonical form, the input vi(t) of each fractional integrator
verifies the following relations:

viðtÞ ¼ xiþ1ðtÞ ði¼ 1 to N�1Þ

viðtÞ ¼ uðtÞ�
XN�1

i ¼ 0

aixiþ1ðtÞ ði¼NÞ ð26Þ
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4.3. Comments

The pseudo state variables xi(t) are the outputs of the
fractional integrators Ini ðsÞ. In the frequency discrete case,
xi(t) is defined as xiðtÞ ¼ C T

Ii
Z iðtÞ.

This means that xi(t) is the weighted sum of the
components zi,j(t) (i¼ 0; . . .; J) of the state vector ZiðtÞ of
the considered integrator.

The variables zi,j(t) are true state variables correspond-
ing to the outputs of first order systems (18), they are able
to memorize an initial condition.

On the other hand, because xi(t) is the weighted sum of
these state variables, it is not a true state variable because
it is not intrinsically able to memorize an initial condition.

The true state vector of the FDE is composed of all the
states of the different fractional integrators: thus the state
vector of an FDE is infinite dimensional, even when there
is only one fractional derivative in the FDE.

The FDE has been converted into an exactly equivalent
infinite dimensional ODE (in the case of the continuously
distributed state). This is not due to an approximation of
the FDE by an integer model, but due to the fundamental
property of the fractional integrator which is intrinsically
of integer nature with infinite distributed dimension.

4.4. Example: one derivative FDE

Though it is an elementary model, the one derivative
FDE is an important case for testing the application of
Lyapunov’s technique to FDEs.

Consider

HðsÞ ¼
1

snþa
ð27Þ

or

DnðxðtÞÞþaxðtÞ ¼ uðtÞ ð28Þ

This system is characterized by the continuous
frequency distributed model

@zðo,tÞ

@t
¼�ozðo,tÞþuðtÞ�axðtÞ

xðtÞ ¼

Z 1
0

mðoÞzðo,tÞdo ð29Þ

with

mðoÞ ¼ sinnp
p o�n

or by the discrete frequency distributed model

dZ

dt
¼ AIZ þBIðuðtÞ�axðtÞÞ

xðtÞ ¼ C T
I Z

dimZ ¼ J ð30Þ

This last model can be expressed as

dZ

dt
¼ AIZ þBIðuðtÞ�aC T

I ZÞ
dZ

dt
¼ A�ZþBIuðtÞxðtÞ ¼ C T

I Z

ð31Þ

with

A� ¼ AI�aBIC
T
I ð32Þ
AI is a diagonal matrix while An is a full matrix, with
dimA� ¼ J�J.

5. Direct Lyapunov approach

5.1. Application of Lyapunov’s technique to FDEs

The application of Lyapunov’s technique relies on the
definition of a Lyapunov function.

With linear ODEs, it is well known that this function
VðX ðtÞÞ has to be a quadratic form [11]

VðtÞ ¼ X T PX ð33Þ

where X is the state of the system and P a positive definite
matrix and V(t) represents the energy of the system.

According to Lyapunov’s theory [14], the system is
stable if ðdVðtÞ=dtÞo0, i.e. if its energy decreases (for an
autonomous system with no input).

Consider now the FDE case corresponding to

Dn ðX ðtÞÞ ¼ AX ðtÞ ð34Þ

where X ðtÞ is a pseudo state vector.
The first step is to define a Lyapunov function VðX ðtÞÞ.

Is it realistic to use a quadratic function of X ðtÞ in the
fractional case ?

Moreover, how is it possible to characterize the system
energy decrease, assuming that we have been able to
define VðX ðtÞÞ?

The choice dVðtÞ=dtis adapted to the ODE case. In the
FDE case, perhaps it would be more convenient to use a
fractional derivative of V(t)?

For example, with a commensurate order system,
DnðVðX ÞÞ appears to be a possible choice; nevertheless, is
DnðVðX ÞÞ adapted to characterize energy decrease?

Let us notice that in the noncommensurate case, there
are N values ni, i.e. N possible fractional derivatives!

This brief discussion illustrates the difficulty to apply
Lyapunov’s technique to FDEs.

5.2. Direct approach

Fortunately, the fractional integrator concept (Ini ðsÞ,
with internal state Zi or zi(o,t)) provides a realistic
solution to these difficulties.

In fact, we have shown that X is only a pseudo state
vector that has to be replaced by the state Z (in the
discrete frequency distributed case).

Thus, the FDE is equivalent to an ODE with integer
order derivatives, characterized by an infinite dimensional
state (large dimensional in practice).

Effectively, if the system is composed of N fractional
integrators, dim Z ¼ N J with J51.

In spite of this difficulty linked to the dimension of Z ,
the FDE has been transformed into an equivalent ODE,
which can be characterized by its Lyapunov function VðZ Þ

characterizing the system energy.
Consider the one derivative FDE case (31) (32):

VðtÞ ¼ VðZÞ ¼ ZT PZ ð35Þ

where P is a positive definite matrix.
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Because ðdZ=dtÞ ¼ A�Z then

dVðtÞ

dt
¼ ZT
ðA�T PþPA�ÞZ : ð36Þ

The equivalent ODE is stable if ðdVðtÞ=dtÞo0, i.e. if
A�T PþPA� is a negative definite matrix.

The equation

A�T PþPA� ¼ �I ð37Þ

defines a linear system whose solutions are the pij

coefficients of matrix P (with pij=pji).
Practically, for a given An, Eq. (37) provides the matrix

P and the FDE is stable if P is positive definite, i.e. if all its
minors are positive.

Apparently, there is no difficulty to apply Lyapunov’s
technique to FDEs.

But this apparent simplicity is an illusion.
In fact, dimP¼ dimA� ¼ J�J with J51.
Thus, it is necessary to calculate the coefficients pij

with a large number of equations and then to test the
positivity of all the minors of P, it is obvious that
numerical problems will arise with this direct approach.

Indeed, these numerical problems will be much more
difficult to solve with an N derivatives FDE, thus the direct
approach does not seem to be realistic.
6. Indirect Lyapunov approach

6.1. Linear FDE

This indirect approach is based on the continuous
frequency distributed model of the fractional integrator.

Consider the one derivative case

DnðxÞþax¼ 0 ð38Þ

which is exactly equivalent to the ODE

@zðo,tÞ

@t
¼�ozðo,tÞ�axðtÞ

xðtÞ ¼

Z 1
0

mðoÞzðo,tÞdo ð39Þ

with

mðoÞ ¼ sinnp
p

o�n

Let us define two Lyapunov functions
�
 v(o,t) is the monochromatic Lyapunov function corre-
sponding to the elementary frequency o.

�
 V(t) is the Lyapunov function summing all the mono-

chromatic v(o,t) with the weighting function m(o).

Thus

vðo,tÞ ¼ z2ðo,tÞ ð40Þ

and

VðtÞ ¼

Z 1
0

mðoÞvðo,tÞdo¼
Z 1

0
mðoÞz2ðo,tÞdo ð41Þ
Indeed, v(o,t) is positive. Because m(o) is positive for
all o, V(t) is also a positive Lyapunov function.

Then

@vðo,tÞ

@t
¼�2oz2ðo,tÞ�2azðo,tÞxðtÞ ð42Þ

and

dVðtÞ

dt
¼

Z 1
0

mðoÞ @vðo,tÞ

@t
do

dVðtÞ

dt
¼�2

Z 1
0

mðoÞoz2ðo,tÞdo�2axðtÞ

Z 1
0

mðoÞzðo,tÞdo

ð43Þ

Finally

dVðtÞ

dt
¼�2

Z 1
0

mðoÞoz2ðo,tÞdo�2ax2ðtÞ ð44Þ

Owing to the Lemma of Appendix 2, dVðtÞ=dt is
negative if a40.

Conclusion: the one derivative FDE

DnðxÞþax¼ 0 is stable if a40 ð45Þ

which is a well known result in the linear case [17].

Remark 1. With the direct approach, it is necessary to
solve a large dimensional problem (37) in order to
investigate the stability of an elementary FDE. So, it is
obvious that the indirect approach leads to a parsimo-
nious methodology, which is the necessary requirement
to solve more complex problems.

Remark 2. A complete analysis of the considered FDE
stability would need to investigate the complex para-
meter case. Unfortunately, this case needs more sophis-
ticated tools and it is not possible to conclude with the
presented theory (see Appendix 3).

6.2. Nonlinear FDE

Consider the nonlinear FDE

DnðxÞ ¼ f ðxÞ ð46Þ

with f(x)=ax3+bx where a40 and bo0.
Owing to the continuous frequency distributed model

of the fractional integrator, the nonlinear system can be
expressed as

@zðo,tÞ

@t
¼�ozðo,tÞþ f ðxðtÞÞ

xðtÞ ¼

Z 1
0

mðoÞzðo,tÞdo ð47Þ

with

mðoÞ ¼ sinnp
p

o�n

Because this system is nonlinear, the definition of the
Lyapunov function will be performed using the variable
gradient method [7,12].

Successively, we have to calculate @vðo,tÞ=@t, dVðtÞ=dt

and finally v(o,t) and V(t).
Consider the monochromatic Lyapunov function

v(o,t).
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Let us define

@vðo,tÞ

@z
¼ az ð48Þ

then

@vðo,tÞ

@t
¼
@v

@z

@z

@t
¼ azð�ozþ f ðxÞÞ ð49Þ

and

@vðo,tÞ

@t
¼�oaz2ðo,tÞþazðo,tÞðax3ðtÞþbxðtÞÞ ð50Þ

Then

dVðtÞ

dt
¼

Z 1
0

mðoÞ @vðo,tÞ

@t
do ð51Þ

and finally

dV

dt
¼�a

Z 1
0

mðoÞoz2ðo,tÞdoþax2ðtÞðax2ðtÞþbÞ ð52Þ

Then, let us consider v(o,t)and V(t). Because we have
defined ð@vðo,tÞÞ=@z¼ az, we get v(o,t) by integration
along the path joining the origin to z

vðo,tÞ ¼

Z z

0

@v

@u
du¼

Z z

0
audu¼ a z2

2
ð53Þ

Finally,

VðtÞ ¼

Z 1
0

mðoÞvðo,tÞdo¼ a
Z 1

0
mðoÞ z

2ðo,tÞ

2
do ð54Þ

Stability condition: The considered system is stable if
V(t)40 and ðdVðtÞ=dtÞo0. V(t) is positive if a40. Owing
to the lemma of Appendix 2, dVðtÞ=dt is negative if

ax2ðax2þbÞo0, i:e: if ax2þbo0 ð55Þ

This last condition defines the stability domain:

�

ffiffiffiffiffiffiffi
�b

a

r
oxo

ffiffiffiffiffiffiffi
�b

a

r
ð56Þ

7. Conclusion

A Lyapunov approach to the stability of fractional
differential equations has been presented in this paper.
The key concept of this methodology is the frequency
distributed fractional integrator model, which is the basis
of a global state space model of FDEs.

Because this global model is an equivalent ODE, usual
Lyapunov tools can be used to analyze the stability of both
linear and nonlinear FDEs. The infinite dimension problem
InN (s) InN-1 (s) 

-aN-1

-aN-2

u(t) xN (t) 

Fig. 1. Simulation of an FDE w
arising with the direct approach has been solved using the
continuous frequency distributed model, with specific
Lyapunov functions, which leads to parsimonious para-
metric conditions, fundamental requirement for the
analysis of N derivatives FDEs.

Only the concepts of this new methodology have
been presented in this paper. Further research will be
focused on N derivatives FDEs and their LMI stability
conditions.

Appendix 1. Simulation of an FDE and its pseudo state
model

A.1. Simulation of an FDE

Consider the FDE (9).
Define

XðsÞ ¼
1

AðsÞ
UðsÞ ð57Þ

and

YðsÞ ¼ BðsÞXðsÞ ð58Þ

which permits to introduce the classical controller
canonical state space form [11]

x1ðtÞ ¼ xðtÞ

x2ðtÞ ¼Dn1 ðx1ðtÞÞ

^

xiðtÞ ¼Dni�1 ðxi�1ðtÞ Þ

^

xNðtÞ ¼DnN�1 ðxN�1ðtÞÞ

DnN ðxNðtÞÞ ¼�a0x1ðtÞ � � � �aN�1xNðtÞþuðtÞ ¼ eðtÞ

ð59Þ

and

x1ðtÞ ¼ In1 ðx2ðtÞÞ

^

xi�1ðtÞ ¼ Ini�1 ðxiðtÞÞ

^

xN�1ðtÞ ¼ InN�1 ðxNðtÞÞ

xNðtÞ ¼ InN ðeðtÞÞ

ð60Þ

This simulation scheme is based on a state space
model which requires N fractional integration operators,
whose transfer functions are, respectively, fInN ðsÞ,InN�1 ðsÞ,
. . .,In1 ðsÞg and connected according to the analog simula-
tion scheme of Fig. 1.
In2 (s) In1 (s) 

-a1

-a0

 b0      
x2 (t) x1 (t) y(t)

ith fractional integrators.
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Finally, y(t) is obtained using the relation

YðsÞ ¼ BðsÞXðsÞ ð61Þ

Corresponding to

yðtÞ ¼
XM�1

i ¼ 0

bixiþ1ðtÞ ð62Þ

A.2. Pseudo state-space model of the FDE

FDE simulation is based on a fractional state-space
model which can be expressed as

Dn ðX ðtÞÞ ¼ AX ðtÞþBuðtÞ ð63Þ

with

X ðtÞ ¼

x1ðtÞ

^

xiðtÞ

^

xNðtÞ

2
6666664

3
7777775

and Dn ðX ðtÞÞ ¼

Dn1 ðx1ðtÞÞ

^

Dni ðxiðtÞÞ

^

DnN ðxNðtÞÞ

2
6666664

3
7777775

ð64Þ

A¼

0 1 0 . . . 0

0 0 1 . . . 0

^ ^ & ^

0 0 . . . . . . 1

�a0 �a1 . . . . . . �aN

2
6666664

3
7777775
; B¼

0

0

^

0

1

2
6666664

3
7777775

The output is

yðtÞ ¼ C T X ðtÞ ð65Þ

with

C T
¼ b0 . . . bM 0 . . . 0
� �

ð66Þ

These relations define the pseudo state space model of
the FDE in controller canonical form [11].
Appendix 2. Lemma

Consider

W ¼W1þaW2 ð67Þ

with

W1 ¼

Z 1
0

mðoÞoz2ðo,tÞdo ð68Þ

and

W2 ¼ x2ðtÞ ð69Þ

The frequency discretization of W1 gives

W1 ¼
XJ

j ¼ 1

ojmðojÞz
2ðoj,tÞDoj ¼

XJ

j ¼ 1

ojcjZ
2
j ð70Þ

Because ojcj40 for all j, W1 is a positive definite
quadratic form. Moreover, W1 can be expressed in the
matrix form as

W1 ¼ ZT MZ ð71Þ
with

M¼

o1c1 0 0

0 ojcj 0

0 0 oJcJ

2
64

3
75 ð72Þ

According to its definition (69), W2 is positive. Because
x¼ C T Z , W2 can be expressed as

W2 ¼ ZT CC T Z ð73Þ

This second expression of W2 is only positive semi-
definite. Consequently, W ¼W1þ aW2 is a positive defi-
nite quadratic form if

MþaCC T
ð74Þ

is a positive definite matrix, i.e. if all its minors are
positive. Indeed, because W1 and W2 are positive, a
positive value of a provides W40. But, is it possible to
find a negative value of a satisfying the positivity of W?

Theoretically, it would be necessary to test all the
minors of (74). Practically, a response is given by the first
minor

m1 ¼o1c1þac2
1 ð75Þ

m1 is positive if a4�
o1

c1
ð76Þ

But because a necessary requirement (Section 4.2) is
o1-0, m1 is positive if a40.

Lemma. The quadratic form W ¼W1þ aW2 is positive

definite if and only if a40.

Appendix 3. Stability anamysis xith complex
parameter

Consider the FDE

Dnðf ðtÞÞþaf ðtÞ ¼ 0 ð77Þ

where a=a+ jb is a complex parameter.
Then, f(t) is a complex function

f ðtÞ ¼ xðtÞþ jyðtÞ ð78Þ

The original FDE is equivalent to two coupled FDEs

DnðxðtÞÞþaxðtÞ�byðtÞ ¼ 0

DnðyðtÞÞþayðtÞþbxðtÞ ¼ 0
ð79Þ

C.1. Conventional stability analysis

Because of coupling, the stability of the real (x) and
imaginary (y) components is subject to the same char-
acteristic polynomial

s2nþ2asnþa2þb2
¼ 0 ð80Þ

We have analyzed the stability of this polynomial
using a frequency approach [22] for n=0.5
�
 for a40 the system is unconditionally stable

�
 for ao0 the system is stable if

b24a2 ð81Þ
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Using Matignon’s result [15], the transfer function
1=ðsn�lÞ is stable if its pole lays outside the domain
defined by the condition

argðlÞ
�� ��rn

p
2

ð82Þ

With the definition l=lx+ jly and n=0.5, we get the
same stability domain as previously, with lx=�a and
ly=�b
C.2. Application of Lyapunov’s approach

Because a is complex, the system is governed not only
by one variable f(t) but also by two pseudo state space
variables x(t) and y(t), with their own internal distributed
variables, zx(o,t) and zy(o,t), respectively.

So, we have to define two monochromatic Lyapunov
functions

vxðo,tÞ ¼ z2
x ðo,tÞ and vyðo,tÞ ¼ z2

y ðo,tÞ ð83Þ

Because the variables x(t) and y(t) are coupled, their
internal variables zx(o,t) and zy(o,t) are also coupled.

Thus, v(o,t) is necessarily a quadratic form weighted
by a P matrix, which has to be symmetric and positive
definite

vðo,tÞ ¼ zT Pz ð84Þ

with

z ¼
zx

zy

" #
and P¼

p11 p12

p21 p22

" #
ð85Þ

Thus

vðo,tÞ ¼ p11z2
xþ2p12zxzyþp22z2

y ð86Þ

Finally, the global Lyapunov function V(t) is obtained
by the summation of all the monochromatic functions
v(o,t) on the 0,1½½ range with the weighting function
m(o).

So, the problem is more complex than with only one
monochromatic function v(o,t). Moreover, the solution is
given by a set of LMI conditions which are not appropriate
to formulate an analytical expression of the stability
domain.

Remark: it would be interesting to express v(o,t) as

vðo,tÞ ¼ zðo,tÞzðo,tÞ ð87Þ

with

zðo,tÞ ¼ zxþ jzy

then, we would get

vðo,tÞ ¼ z2
xþz2

y ð88Þ

and

VðtÞ ¼

Z 1
0

mðoÞz2
x ðo,tÞdoþ

Z 1
0

mðoÞz2
y ðo,tÞdo

¼

Z 1
0

mðoÞ zðo,tÞ
�� ��2 do ð89Þ

which is a more simple expression than previously.
This choice of V(t) leads to the derivative

dVðtÞ

dt
¼�2

Z 1
0

mðoÞo zðo,tÞ
�� ��2 do�2a f ðtÞ

�� ��2 ð90Þ

which gives the condition

dVðtÞ

dt
o0 if a40 ð91Þ

This result is correct, but conservative, because it does
not take into account the domain defined by b24a2 for
ao0.

The conservatism is caused by the choice
vðo,tÞ ¼ z2

xþz2
y which is wrong.

An appropriate Lyapunov function has to take into
account the coupling of the internal variables with the
matrix P.

C.3. Conclusion

This stability analysis requires a Lyapunov function
with two coupled variables, which is outside the initial
objective of the paper.
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